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___Abstract
• 0Consider the vector initial value problem cy f(ty,c),  y(O) = y (c)

with f(t,y,0) — F(t)y + G(t) for a singular matrix F(t) of constant rank
with stable eigenvalues and zero elgenvalues having simple elementary divis-
ors. This paper shows how to determine the unique limiting Solution when
the reduced problem FY

0 
+ C — 0 is solvable and how to obtain a uniform

asymptotic expansion for the solution on finite t intervals.

I
~ I ~~

* This work was supported in part by the Office of Naval Research under Con—
tract Nuther N00014—76—C—0326.

4 
_ _  

_ _ _ _ _ _ _ _ _ _



—1—

1. Introduction

We wish to consider the vector initial value problem

(1) = f ( t ,y , c) ,  y(0) — y0(c)

in the nearly linear situation that

(2) f( t,y,O) F( t)y + G( t ) .

When F( t) is stable on some interval 0 < t < T, it is a classical result

of Tlhonov (17] that the limiting solution of the initial value problem (1)

will converge to the solution Y
0 

= —F
10 of the reduced equation

(3) 0 = F(t)Y
0 + G(t)

for 0 < t c T as the small positive parameter c tends to zero. (The

result continues to be valid for all t > 0 if Y
0 decays exponentially to

zero as t -‘ (cf. Hoppensteadt (7]).) The solution generally converges

nonuniformly at t — 0 since we cannot expect that y°(O) Y
0(O). Assuming

inf inite differentiability of f in t and y and asymptotic series expan-

sions in c for both f and y°, we can indeed show that the asymptotic

solution y(t,c) of (1) is of the form

(4) y(t ,c) — Y(t,c) + 1I(r ,c)

throughout 0 c t < T where Y and 11 have asymptotic expansions in c

and the terms of It all tend to zero as the stretched (or boundary layer)

4

-

. 
- -



—2—

variable
Ip 

~

(5)

tends to infinity. Thus , the limiting asymptotic solution for t > 0 is

provided by the outer solution Y(t,c) ,  and the nonuniform convergence of
• the solution from y0(c) to Y(0,c) near t = 0 is accomplished through

the boundary layer correction Ii(r,c).

If F(t) has unstable eigenvalues, we cannot expect the initial value

problem to have bounded solutions as c -‘ 0 unless we restrict the initial

values to a lower dimensional manifold (cf. Levin [11]). It is still reason-

able , however, to allow arbitrary initial values if the matrix F(t) is

singular. (The usual expansion procedure will then break down.) For an

14—vector y, let us assume

• (Hi) the M x M matrix F(t) has a constant rank k, 0 < k < 14, for all

t in 0 < t < T, its nonzero eigenvalues all have negative real parts

there, and its null space is spanned ~~ M — k linearly independent

eigenvectors.

Under (Hi) , we shall find that the asymptotic solution of (1) — (2) re-

mains in the form (4) whenever the limiting equation (3) is consistent, i.e.

C cR(F), the range of F. Because F is singular, (3) no longer has a

unique solution. Its solution is determined up to an arbitrary element of

N(F), the null, space of F, so additional analysis is required to determine

the unique limiting solution for t > 0. This is an instance of a “singular

singular—perturbation problem” where the reduced problem (obtained when

4
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£ — 0) has an infinity of solutions in regions of uniform convergence.

More generally, one could consider singular problems (1) where

f ( t ,y,0) — 0 for some t values along sone solutions y of the reduced

equation f (t ,y, 0) — 0. Difficult turning point problems would then be faced

(cf. Wasow [20]).  A somewhat more restricted class of nonlinear problems is

considered in O’Malley and Flaherty [15]. Their analysis seeks to eventually

develop numerical algorithms f or such problems. Among other possible appli-

cations are high gain feedback control systems (ef. O’Malley [131), singular

control problems (O’Malley [14]), and certain Cauchy problems in Banach

spaces (Cordon [6]). We note that the structure of the asymptotic solutions

will generally differ considerably if the elementary divisors of F corres-

ponding to zero aigenvalues are nonlinear. An example is provided by

—l 0 0

f(t,y,e) — F(t,e)y for F a o 0 —c . Further, if P remains non—

0 —l 0

singular, but has purely imaginary elgenvalues, rapidly oscillating solutions

would result (cf. Hoppensteadt and Miranker (91).

2. Preliminary Linear Algebra

Under hypothesis (Hi), we are guaranteed that the matrix F can be put

into its row—reduced form by an orthogonal matrix E(t), i.e.

(6) EF_ []

where U(t) is a k x 14 matrix of rank k. Indeed , F is guaranteed by

the singular value decomposition of F, i.e. F — E’DH for orthogonal

matrices F and H and diagonal 0 (cf., e.g., Stewart (161). F can be

obtained numerically by performing a sequence of Householder transformations

I
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(cf. Colub (4]). Moreover, the differentiability of E will follow that of

the coefficients under the constancy of rank assumption (cf. Colub and

Pereyra 15]) .

The use of such or thogonal ma trices to reduce F to echelon form seems

more convenient than the diagor.alization procedures which have been more

common in the singular perturbation literature. Among other differences, it

avoids the use of eigenvectors of F. The success of traditional procedures

on closely related problems is demonstrated in Fife [3], Butuzov and

Vasil’eva [1], and Vasil’eva [19]. Alternative analogous methods which don’t

involve orthogonal matrices may be necessary for nonlinear problems (cf.

O’Malley [14)).

Writing

4 rEll
(7) E = (

LE2J
where F1 is k x 14, we have the orthogonality condition

(8) E2F — 0.

Furthermore, the orthogonality of E implies that

(9) E1E~ — 0, E1E~ 
— Tk,E2E2 1M—k’ and E~E1 + E~E2 — TM.

These last relationships imply that

(10) P.EjF1 P2 and Q — E ~E2 — Q
2

____________• 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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are complementary projections. Indeed , a direct sum decomposition of 14—space

results with

(11) R(Q) ~4(F’) and R(P) — R(F) .

This follows since F’Q = (E
2
P)’E

2 
= 0 shows that Q projects into N(F’)

and the dimensions of R(Q) and ?4(F’) are both 14 — k. Finally, (7) and

E1FE~ E1FE~
(8) show that EFE ’ — where the k x k matrix

0 0

(12) S E
1FE~ is stable

since it shares the k stable eigenvalues of F.- Indeed, the purpose of

(Hi) is to provide an orthogonal matrix E such that EF is row—reduced

with EFE ’ having k stable eigenvaluea.

3. The Transf ormation Approach

Making the one—one transformation

(13) z — E(t )y ,

z will satisfy

(14) cz ’ — EFE’s + EG + e(EE’z + E(f(t,E’~ ,c) —

Setting

z
1~~ 

E
1y

(15) 5 —  1—
~2J 

F27

1~~

- -
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then, provides a transformed singular perturbation problem

cz~ = Sz
1 

+ E
1

FE~z2 + E1C + cg1(z1,z2,t,c)

(16)

-
• cz~ E2G + cg2(z1,z2,t,c)

where 
~2 

— ~2E ’z + ~~~ E
2

(f ( t,E’z,c) — f(t,E’z,O)). The asymptotic behavior

of solutions to (16) differs considerably in the two cases E2G 0 and

E2G # 0. Since E2G 0 if and only if QG — 0, Q projecting onto N(F’),

we’re guaranteed that E2G = 0 if and only if the reduced problem (3) is

consistent. Taking

(17) E2G 0 throughout (0 ,T],

then , reduces (16) to a “nonsingular singular—perturbation problem.” For it ,

classical singular perturbation theory (cf., e.g., Eoppensteadt [8] or

O’Malley [12]) implies that (16) — (17) has a limiting solution for t > 0

210
which is the unique solution of the reduced problem

220

0 — SZ10 + E1FE~Z 20 + E
1
G 

•

• (18)

— g2
(Z10,220, t,0), Z20(0) — E2(0)y

°(0),

presuming that the corresponding nonlinear initial value problem

(19) Z20 — 
~~~~ 

E1(FE2Z20 + G),Z20,t,0), Z20(0) — E2(0)y°(0)

- -_ _ _ _
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has a solution for 0 < t 5 T. Furthermore, that theory also shows that the

nonuniform convergence of z near t = 0 is determined as the decaying

solution of the boundary layer problem

dT 
0

dr 
S(0)T 10, T10(0) = E1(0)y (0) — z

~(0)
• (20)

dT 20
dr =0 .

Thus , T10(T) = e
_S
~
O)T 

T10(0) and T20 (0) 0 for r > 0. The bifurcation

character (ef., e.g., Cesari [2)) of these limiting problems makes them dif-

fer from the classical ones. Here, the reduced problem (18) consists of an

• algebraic problem for a k—vector and an initial value problem for an N — k

vector, while the boundary layer problem (20) involves a k dimensional

initial value problem and an 14 — k dimensional algebraic problem.

4. A Direct Solution

Since the boundary layer correction TI (r ,c) will be asymptotically

negligible for each t > 0, the outer solution

• (21) Y(t,c) ‘~. E Y (t)c~j -o j

must satisfy the original nearly linear system (1) as a power series in c.

Rewriting the equation as

(22) ?(t)Y — —0(t) — [f (t ,Y,e) — f(t,Y,0)J + EY

and substituting in the expansion (21) implies that the terms of (21) must

I

_ _

_-  

_ _
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_ _ _ _ _ _
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successively satisfy the algebraic equations

(23) F( t)Y~ =

where

= —G , 
~o = ‘

~o —

(24) and 
-

= 

~k 
- fyc (t~Yo~

®’
~k 

+ nk_l(t), k > 1

for a known function 
~k l  of Y

0
, Y

1
, ..., T

k—1 
Assuming consistency of

(3) , G cR(F) so, by (8), QG = 0. Consistency of (2,3), by the Fredhoim

alternative, requires Q~~_1 = 0, j > 1, so we obtain the singular differ-

ential equations

QY
0 

= Qf (t ,Y
0
,0)

(25)  and

= Qf 
c(t,Yo,

O)Y
k 

- 

~~k—l’ 
k > 1.

Taking (23) and (25) together nearly allows us to obtain the outer solu—

tion Y termwise. Specifically, multiplying (23) by E
1 

implies that

E1
F(E~E1 + Q)Y

J 
— E
15 1, j > 0, so the invertibility of S — E1PE~ and the

• definition of P imply that

(26) PY~ — _AF(QY~) +

where A — E~S
’E1. Thus PY

1 
and thereby T

i 
are completely determined as
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linear functions of QY~ . Putting (25) and (26) together, then , implies the

differential equations

(QY
0
) = Q(8(QY

0
) — AG) + Qf (t ,8(QY

0
) — AG,0)

• L (27) and

= ~ ÷ Qf 
c
(t,Y

OI O)j [B(QY
k
) + A

~k l ) — 

~“k—l’ 
k > 1

• since (26) implies that

(28) = 8(QY.) +

f or the projection 8 = I — AF. Note that the representation (4) implies the

- - yet unspecified initial values

(29) 
~~~~~~~~ 

— 

~~
°
~~k~°~’ 

k > 0

• needed to completely determine the outer solution Y(t,c).

If we anticipate that Q(0)11
0
(0) = 0 (paralleling the result that

• T20(0) — 0 in (20)), it will follow that the limiting outer solution is given

by

(30) Y0 
= 8(QY0) - Ac

where QY0, the projection of the limiting solution onto t1(F’), satisfies

the nonlinear initial value problem

A

6
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(QY
0
)’ = ~ (8(QY

0
) - AG) + Qf (t,B(QY

0
) - AG ,0)

~

• (31)

~~ Q(0)Y
0
(0) = Q(0)y°(O) .

• 
- We shall assume that the solution to (31) exists throughout 0 < t < T (in

analogy to our existence assumption for (19)). We note that (31) shows that

the limiting solution of (1) — (2) is determined by a dynamical system in an

M — k dimensional space. Further , we observe that unique solutions and

for k > 0 follow from the linear differential equations of (27) and the

• algebraic relation (28).

• By the form of (4), the boundary layer correction II must satisfy the

system

(32) = e — c = f(ct,Y(ct,c) + fl(t,c) , c) — f (ct,Y(ct,c),c)

and the terms of its expansion

(33) 1T(r ,c) ~u Z
- j=0 J

should tend to zero as i tends to infinity. In the quasilinear situation

when (2) holds , equating coefficients successively in (32) implies the linear

system

• (34) = F(0)1T~ +

where is a linear combination of the preceding coefficients IT
t, 

L <

with polynomial coefficients in -r, and E 0. Since QF 0, it follows

4
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that -
~~

-
~~ (Q(O) II . ( r ) )  Q(O) C~~1(r). Thus, the decay requirement implies that

(35) Q(0)IT~(T) — —Q(0) J c~~1
(s)ds.

We note, in particular, that (35) allows the termwise determination of the

initial values (29) needed to fix the outer solution. It remains to succes-

sively find the P(0)TT~ ( r ) ’ s. Multiplying (34) by E
1
(0) implies that

f (E~ (0)JI~ ) = S(0) (E
1

(0) fl~ ) + E
1

(0)F (0)(Q(0)fl .) + E1(0)C~~1. Using (35) and

= E~ (0)E
1
(0) + Q(0) implies the decaying solutions

(36) U~ (t) Ej(0)e
5(O)t

E1
(0)fl~ (0) - Q(0)

+ E~ (0) f eS T
~
t)

E ( O ) [ C (r) — F(0)Q(0) 
Jr 

~~ ..1(s)dsJdr.

Thus, the boundary layer terms are determined successively as exponentially

decaying vectors up to the initial value E
1
(0)fl(0,c), just as the outer ex-

pansion coefficients are determined up to Q(0)Y(0 ,c). Since the limiting

outer solution is known from (30) — (31) and higher order terms follow succes-

sively from (27) — (29), the unique higher order boundary layer correction

terms follow from (36) with

(37) E
1

(O) T 1
1

(0) — E
1

(0) (y~ — Y
1

(O) ) ,  j > 0.

For j — 0, we’ll have

(38) 11
0
(t) Ej(0)e~~~

)t
E
1

(0)(y O (0) — 8(0)Q(0)y°(0) — A(0)G(0)).

Since QE~ — 0, it follows that lies within the k dimensional
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R(F) = R(P). The function of this zero order boundary layer correction term,

then , is to “instantly” transfer from the prescribed initial vector y°(0)

to Y0(0
+) where the reduced equation (3) is satisfied. Finally, we observe

that the expansion (4) which we ’ve formally generated will, of course, agree

with that obtained by our earlier transformation procedure and is justified

by it.

Summarizing, we have

Theorem

Under hypothesis (Hi); (H2) , that (3) is consistent; and (H3), that the

solution (QY
0

) of (34) exists for 0 < t < T, the unique solution of the

initial value problem (1) — (2) is asymptotically of the form (4) uniformly

in 0 < t < T  as c -’- O.

• 5. The Inconsistent Problem

If E
2

G # 0, the trar~ formed system (16) cannot be easily solved as

(16) — (17) was. Then, the limiting system (3) has no solu tions and we cannot

expect to have an outer solution of the form (21).

By variation of parameters, we know that solution of (1) — (2) must sat-

isfy the integral equation

(39) y(t ,c) - Y(t ,c)y°(c) + 
~ 1 Y(t ,e)Y~~(s ,c)(C(t) + f(t,y, c) — f ( t,y,0) )dt

0

where V is the fundamental matrix solution of the linear system

(40) — F(t)Y , Y(0,s) — 
~~

Such fundamental matrices can be constructed following the work of Turrittin
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and earlier authors (cf. Turrittin [18]). Under natural assumptions, we can

show that IIY(t ,c)V 1(s,c ) I I  < K f or 0 < s,t < T for some constant K

• 
provided no eigenvalues of F are unstable. When F is stable, we instead

have a decaying bound Ke
1
~~
t8)

~~ and this allows the corresponding outer

solution for (1) — (2) to be bounded. When F has eigenvalues with zero real

parts, other estimates are appropriate (cf. Hoppensteadt and Miranker [9]).

For

(41) f ( t ,y, e) = F( t,c)y + G(t,c)

linear In y, (39) makes it natural to seek the solution to (1) in the form

(42) y(t,c) — Z( t,c) + II (r ,c)

when hypothesis (Hi ) holds for F
0 

with (F(t,c),C(t,c)) ~
. E (F ( t ) ,G ( t))c1.
j=0

Here the outer solution Z(t,c) and the boundary layer correction II have

power series expansions in c and II + 0 as r -, . Now the limiting solu—

tion ~ Z0
(t) for t > 0 satisfies the homogeneous system F

0
(t)Z

0 
— 0.

Applying the Fredhola alternative to the equation for F0Z1 requires that

Q(I~ 
— F

1Z0 
— C

0) 
— 0 where Q is the projection onto N(F~). Using our

earlier notation, then, we have the unbounded limiting solution ~ Z0(t) with

(43) — 8(QZ
0
)

where QZ0 satisfies the linear system

4 (44) (QZ0) — (4 + QF1)8(Qz0) + QG0, Q(0)Z
0(0) 

— 0.

_ _ _ _ _ _ _ _ _ _  _ _ _  ~~~~ —•
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The boundary layer correction is calculated as before. When 0~

= 0 and the solution reduces to the form (4) obtained for the consistent

problem.

If f is nonlinear in y, the expansion (42) cannot generally be used.

(A term like ~k would provide a term 
~~ 

Z~ in -the outer region.) For

polynomial dependence on y, an appropriate scheme might be devised for the

inconsistent problem though we shall not do so (cf. I(ersten [10], however ,

for a related discussion concerning special boundary value problems).
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